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1 Causal Inference and Predictive Comparison

Causal Inference and Predictive Comparison

• We have been using regression in the predictive sense, to determine what
values of Y tend to be associated with particular values of X in a given
hypothetical “superpopulation” modeled with random variables and prob-
ability distributions.

• In causal inference, we attempt to answer a fundamentally different ques-
tion, namely, what would happen if different treatments had been applied
to the same units.

1.1 How Predictive Comparison Can Mislead

Examples

Example 1 (Example 1). • Suppose a medical treatment is of no value. It
has no effect on any individual.

• However, in our society, healthier people are more likely to receive the
treatment.

• What would/could happen? (C.P.)
Example 2 (Example 2). • Suppose a medical treatment has positive value.

It increases IQ on any individual.

• However, in our society, lower IQ people are more likely to receive the
treatment.

• What would/could happen? (C.P.)

1.2 Adding Predictors as a Solution

Adding Predictors as a Solution

• In the preceding two examples, there was a solution, i.e., to compare
treatments and controls conditional on previous health status. Intuitively,
we compare current health status across treatment and control groups only
within each previous health strategy.

• Another alternative is to include treatment status and previous health
status as predictors in a regression equation.
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• Gelman and Hill assert that “in general, causal effects can be estimated
using regression if the model includes all confounding covariates and if the
model is correct.”

1.3 Omitted Variable Bias

Omitted Variable Bias

Suppose the “correct” specification for confounding covariate xi is

yi = β0 + β1Ti + β2xi + εi (1)

Moreover, suppose that the regression for predicting xi from the treatment
is

xi = γ0 + γ1Ti + νi

Omitted Variable Bias – 2

Substituting, we get

yi = β0 + β1Ti + β2(γ0 + γ1Ti + νi) + εi

= β0 + β2γ0 + β1Ti + β2γ1Ti + (εi + β2νi)
= (β0 + β2γ0) + (β1 + β2γ1)Ti + (β2γ1Ti) (2)

Note that this can be written as

yi = β∗0 + β∗1Ti + ε∗i

where
β∗1 = β1 + β2γ1

2 Causal Inference – Problems and Solutions

2.1 The Fundamental Problem

The Fundamental Problem
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• The potential outcomes of y1
i and y0

i under T are the values that the
ith unit would have demonstrated had level 1 or level 0 of the treatment
actually been received by that unit.

• In general, of course, the ith unit (or, for simplicity, individual i) will not
receive both treatments so either y1

i or y2
i is a counterfactual and will not

be observed. We can think of the counterfactuals as “missing data.”

2.2 Ways of Getting Around the Problem

Possible Solutions

We can think of causal inference as a prediction of what would happen to
unit i if Ti = 1 or Ti = 0.

There are 3 basic strategies:

1. Obtain close substitutes for the potential outcomes. Examples:

(a) T=1 one day, T=0 another

(b) Break plastic into two pieces and test simultaneously

(c) Measure new diet using previous weight as proxy for y0
i .

2. Randomize. Since we cannot compare on identical units, compare on
similar units. In the long run, randomization confers similarity.

3. Do a statistical adjustment. Predict with a more complex model, or block
to achieve similarity.

2.3 Randomization

Randomization

In a completely randomized experiment, we can estimate the average treat-
ment effect easily as

average treatment effect = avg (y1
i − y0

i )

The standard test on means can be applied. Of course, issues of external validity
apply too. The results are relevant only for the population from which the
sample was taken.
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An Electric Example

Example 3 (Electric Company Study). • 4 grades, 2 cities

• For each city and grade, approximately 10-20 schools were chosen

• 2 weakest classes randomly assigned to either treatment or control

• T = 1 classes given opportunity to watch The Electric Company, and
educational show

• At the end of the year, students in all classes were given a reading test

Post-Test Results

Test scores in control classes Test scores in treated classes

Grade 1

control.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 69
  sd = 13

treated.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 77
  sd = 16

Grade 2

control.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 93
  sd = 12

treated.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 102
  sd = 10

Grade 3

control.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 106
  sd = 7

treated.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 107
  sd = 8

Grade 4

control.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 110
  sd = 7

treated.Posttest[Grade == j]

F
re

qu
en

cy

0 50 100

mean = 114
  sd = 4

2.4 Controlling for a Pre-Treatment Predictor

Controlling for Pre-Treatment Score

• The preceding results are suggestive.
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• However, in this study, a pre-test was also given. In this case, the treat-
ment effect can also be estimated using a regression model: yi = α+θTi +
βxi + errori.

• First, we fit a model where post-test score is predicted from pre-test score,
with constant slopes treatment and control groups.

• Treatment group is represented by a solid regression line and circles, con-
trol by dotted regression line and filled dots.

• In this case,

– The treatment effect is estimated as a constant across individuals
within treatment group

– The regression lines are parallel, and

– The treatment effect is the difference between the lines.

Results with No Interaction
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Including an Interaction Term
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• The preceding model failed to take into account the fact that the relation-
ship between pre-test and post-test scores might differ between treatment
and control groups.

• We can add an interaction term to the model, thus allowing treatment
and control groups to have regression lines with differing slopes.

• In this model, yi = α+ θTi + β1xi + β2Tixi + errori.

• Note that in this mode, the treatment effect can be written as θ+β2xi. In
other words, the treatment effect changes as a function of pre-test status.

Interaction Model Results
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A Combined Picture

This next plot shows T regression coefficient estimates, 50% and 90% confi-
dence intervals by grade. You can see clearly how “controlling” for pre-test score
reduces variability in the estimators and smooths them out.
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Note that all classes improved whether treated or not, so it is hard to see
what is going on. (The pre-was identical to the post-test except in grade 1, so
the improvement is hardly a shock.)

Combined Plot of Treatment Effects

Subpopulation Regression on T Regression on T,
controlling for pre−test
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2.5 The assumption of no interference between units

No Interference between Units

• An important assumption in these modeling efforts is that treatment as-
signment for individual i does not effect treatment effect for individual
j.

• Without this assumption, we’d need to define a different potential outcome
for the ith person not only for each treatment, but also for every other
treatment received by every other relevant individual!
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3 Treatment interactions and post-stratification

Treatment Interactions and Post-Stratification

• Once we include pre-test information in the model, it is natural to allow
an interaction between the pre-test (x) and the treatment effect (T ).

• As mentioned above, once the interaction term is included, the effect of
the treatment varies for each individual as a function of the pre-test score.

Simple Model

> display(lm(post.test˜treatment ,

+ subset=(grade ==4)))

lm(formula = post.test ~ treatment, subset = (grade == 4))

coef.est coef.se

(Intercept) 110.36 1.30

treatment 3.71 1.84

---

n = 42, k = 2

residual sd = 5.95, R-Squared = 0.09

The estimated effect is 3.7 with a standard error of 1.8.

Including the Pre-Test

We can get a more efficient (lower s.e.) error by including the pre-test as a
predictor.

> display(lm(post.test˜treatment+pre.test ,

+ subset=(grade ==4)))

lm(formula = post.test ~ treatment + pre.test, subset = (grade ==

4))

coef.est coef.se

(Intercept) 41.99 4.28

treatment 1.70 0.69
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pre.test 0.66 0.04

---

n = 42, k = 3

residual sd = 2.18, R-Squared = 0.88

The new estimated treatment is only 1.7 with a standard error of 0.7. Next we
add the interaction.

Adding a T × x Interaction

> display(lm(post.test˜treatment+pre.test +

+ treatment:pre.test , subset=(grade ==4)))

lm(formula = post.test ~ treatment + pre.test + treatment:pre.test,

subset = (grade == 4))

coef.est coef.se

(Intercept) 37.84 4.90

treatment 17.37 9.60

pre.test 0.70 0.05

treatment:pre.test -0.15 0.09

---

n = 42, k = 4

residual sd = 2.14, R-Squared = 0.89

The effect is now 17.37 − 0.15x. Looking at a previous plot, we can see that
pretest scores range from about 80 to 120, and plugging into the formula, we see
that the treatment effect varies from about 5.37 to −.63. This is an estimate of
the range of the effect, and does not include statistical uncertainty indications.

Picturing the Uncertainty

To get a sense of the uncertainty, we can plot the estimated treatment effect
as a function of x, including random simulation draws to create a picture of the
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uncertainty involved.
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Computing Uncertainty

• We can also estimate a mean treatment effect across classrooms by aver-
aging. Across classrooms, we calculate the treatment effect as θ1 + θ2xi

and simply average.

• We can also compute the mean and standard deviation of these estimated
average effects across the simulations depicted in the preceding graph. In
this case, we get

> mean(avg.effect)

[1] 1.760238

> sd(avg.effect)

[1] 0.6851486
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• The result is 1.8 with a standard deviation of 0.7, quite similar to the
estimate obtained by fitting the model with no interactions. The main
virtue of fitting the interaction is to get an estimate of how the treatment
effect varies as a function of the pretest.

3.1 Post-stratification

Computing Average Treatment Effects

Treatment effects may vary as a function of pre-treatment indicators. To
estimate an average treatment effect, we average over the population.

For example, if we have the model

y = β0 + β1x1 + β2x2 + β3T + β4x1T + β5x2T + ε

the estimated treatment effect is then

β3 + β4x1 + β5x2

The mean treatment effect is then

β3 + β4µ1 + β5µ2

where µ1, µ2 are the means of x1, x2.

Standard errors can be computed via simulation or by analytic derivation.

4 Observational Studies

4.1 Electric Company example

The Electric Company Revisited

According to Gelman & Hill , this is an observational study “for which a
simple regression analysis, controlling for pre-treatment information, may yield
reasonable causal inferences.”

It turns out that, in the study, once T = 1, the teacher decided whether to
replace or supplement the regular reading program with the Electric Company
show.
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The results are on the next slide. Supplementing seems to more effective than
replacing, at least in the lower grades, although the low precision compromises
our ability to judge.

The Electric Company Revisited

SubpopulationEstimated effect of supplement,
compared to replacement
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4.2 Assumption of ignorable treatment assignment

Ignorability

Formally, ignorability states that

y0, y1 ⊥ T | X

This says that the distribution of potential outcomes is the same across levels of
the treatment variable T , once we condition on the confounding covariates X.

Note:
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• We would not necessarily expect any two classes to have the same proba-
bility of receiving the supplemental version of the treatment;

• However, we do expect any two classes at the same level of the confounding
variable (in this case pre-test score) to have had the same probability of
receiving the treatment.

Ignorability

A non-ignorable assignment mechanism might occur if, for example, brighter
more motivated teachers assigned students to a treatment based on their knowl-
edge of the characteristics students, and that motivation also led to higher scores.

It is always possible that ignorability does not hold. If it seems likely that
treatment assignments depended on information not included in the model, then
we need to choose a different analysis strategy.

4.3 Judging the reasonableness of regression as a model-
ing approach, assuming ignorability

Lack of Overlap

• Even if ignorability is satisfied, regression on the covariates and treatment
may not be the best approach, especially if there is lack of overlap and
balance.

• For example, suppose in the Electric Company experiment, students in the
supplementary condition tended to have higher pre-test scores. This can
lead to misleading results, because the data are being plotted in different
regions of the range of pretest scores.
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